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L E T E R  TO THE EDITOR 

Hydrogen atom in a strong magnetic field: calculation of the 
energy levels by quantising the normal form of the regularised 
Kepler Hamiltonian 

Marko Robnikt and Eberhard Schriifer 
Institut fur Astrophysik, Univenitat Bonn, Auf dem Hugel 71, D-5300 Bonn, West Germany 

Received 19 December 1983, in final form 1 July 1985 

Abstract. The energy levels of the hydrogen atom in a magnetic field are obtained by 
quantising the Birkhoff-Gustavson normal form of the diamagnetically perturbed, regu- 
larised Kepler Hamiltonian. The method enables us to go beyond the approximations 
quadratic in the field and to calculate quartic and higher terms in the power expansion 
for the energy levels. (We consider here only the case m = 0.) The result is equivalent to 
finding the field-dependent third integral of motion. 

The Hamiltonian of an atom in a magnetic field contains field-independent terms 
(vacuum terms), terms linear in the field (paramagnetic interaction) and the quadratic 
terms (diamagnetic terms). Whereas the analysis of the linear Zeeman effect is complete, 
the quadratic Zeeman effect, which is essential to the atomic diamagnetism, is very 
difficult to treat because it is just the diamagnetic term that breaks the symmetries of 
the vacuum problem. This makes the system non-integrable, and there is no obvious 
choice of ‘good quantum numbers’. New phenomena arise in this mixing regime of 
equally strong forces with different symmetries. This is the case for low lying states 
in the fields near the critical field strength Z2Bo, Bo= a3e2/ro=2.35 lo9 G ( a  is the 
fine structure constant, ro = e2/ m,c2, the classical electron radius), or for highly excited 
atoms (Rydberg atoms) in relatively weak fields available in a laboratory, e.g. B = 5 x 
lo4 G. The general criterion is N3B/Bo= 1, where N is the main quantum number. 

The interesting phenomena of nonlinear dynamics involved in the problem have 
attracted the attention of theoreticians, because of important astrophysical applications, 
and even more so because of the experimental motivation: with the advent of tunable 
dye lasers the experimental physicists are able to supply beautiful spectra of such a 
fully developed diamagnetic regime. A great number of papers have been published 
recently on this subject. It is impossible to give a complete list of all the references, 
but we refer the reader to a recent review article by Gay and Delande (1983) and the 
references therein. 

The hydrogen atom in a magnetic field is the prototype for the study of atomic 
diamagnetism. It leads to important methodological problems and is also a realistic 
approximation for Rydberg atoms in strong fields. The purpose of this work is to 
further develop the ideas published earlier (Robnik 1981, 1982). This includes in 

t Present address: H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 ITL, UK. 

0305-4470/85/ 140853 +07$02.25 @ 1985 The Institute of Physics L853 



L854 Letter to the Editor 

particular the construction of the approximate, formal integral of motion. The field- 
independent integral has been constructed by Solovev (1981, 1982). The proposal to 
use the Birkhoff -Gustavson normal form for the quantisation has been independently 
followed by Reinhardt and Farrelly (1982). In the present work we apply the quantisa- 
tion method recently developed by Robnik (1984). The results that we obtain-the 
power expansion of the levels as functions of the field-are conceptually equivalent 
to the construction of a jield-dependent third integral of motion. In this sense we go 
beyond Solovev’s work and provide analytic results that are different from those of 
Reinhardt and Farrelly (1982). 

The dimensionless classical Hamiltonian of our system is 

( 1 )  H = ’  2 - r - 1 + i  2 2 
2P 87 P 

where p2 := x2 + y 2 ,  rz := z2 + p2,  y := B/ Bo, the dimensionless magnetic field, while all 
coordinates are measured in units of Bohr radii, and the energy E = H is measured 
in atomic units. In these units h = 1 .  We treat here the naked quadratic Zeeman 
problem: infinite mass of the nucleus and no motion of the CM (i.e. no electric field). 
We also eliminated the paramagnetic term by considering the problem in a uniformly 
rotating Larmor frame, or by specialising to the case m = O .  

By transforming ( 1 )  to the parabolic coordinates 5, 7, 

(:= r - z  q : = r + z  (2) 
we have 

where m =p+,, the z component of the angular momentum. 

mation 
The next step is to regularise the Kepler Hamiltonian by the canonical transfor- 

e =  U2 Pe = P U P U  

v = U  Pa = P U P 0  
2 

whence 

2 =$[ p t  + p t  + (-2E)( U’+ U’)] + Q Y ~ U ~ U ~ (  u2 + U’). 
By stretching the variables 

u ( - - 2 ~ ) l / ~ +  u ( - 2 ~ ) i / 4 +  

pU / ( -2E) ‘I4 + pu 
we finally obtain the efectiue Hamiltonian %, 

p U /  ( -2E) + pu 

+$( u2+pz,) + - T+ - +$Gu2u2( u2 + u2) 3: v’J 

(4) 

(7) 

where 

G =  y2/(-2E)’. 
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We consider only the case of vanishing angular momentum m = 0. The Birkhoff- 
Gustavson normal form of the effective Hamiltonian (7) obtained by using a symbolic 
computer program (Schriifer 1985) written in REDUCE (Heam 1983) can be cast in the 
form (see Robnik 1984) 

+... =A+B-+C-+D-  
(-2 E)”’ (-2E)’ (-2E)4 (-2Ej6 

Y 2  Y4 Y 6  1 $x= 
with 

A = $( r1 + r 2 )  

= A( T~ + r2)(3T1r2+ K 2 +  K * 2 )  

[ ~ ~ ~ ~ ( 6 5 7 :  + 4 2 3 ~ ~ 7 2  + 657;) 71 + 7 2  C = - -  
6144 

2048 
5225 3529 

49152 71 7 2  +- +:+- 7 3529 
2048 “ + 49152 18432 

104639 
589824 

7:r2+- 

104639 533 479 +- 7,72+-  7172+- 
589824 12288 2949 12 

2179 
TIT:+- 

2179 11461 11461 + $( K4+ K*4) (-71 +- 7:r2+- 
294912 294912 2949 12 2949 12 

where in the normal variables we have the definitions 

-1 r , = $ ( u 2 + p : )  2 -  2 ( V 2 + P t )  

K = i( u + ipu)( u - ipu). 

We note that most of the normal terms vanish as a consequence of the 1 : 1 resonance 
and of the special structure of the diamagnetic perturbation as seen in equation (7): 
A is the unperturbed harmonic part, i.e. it is of the second degree, B is the sixth degree, 
C is tenth degree, D is fourteenth degree, etc. Therefore, in order to go beyond the 
quadratic approximation of equation (8) one must calculate the normal form to at 
least tenth order. We calculated the fourteenth degree, but in the following we shall 
use only the quartic or lower terms in (8), although it is a technical point to go higher 
if one wishes. One should notice that the effective normal Hamiltonian (8) depends 
on the total energy E, so that in quantising (8) we get an implicit relation for E. 

Before embarking on the quantisation scheme we note that for vanishing magnetic 
field but arbitrary m the usual WKB quantisation of (7) yields exactly the Coulomb 
spectrum 

E, , , , ,  = - f ( n ,  + n2+  m + I ) - ~  ( 1 1 )  
where n,, n, are the two non-negative integer quantum numbers. Let us now consider 
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the limiting case m + 0. The simple setting of T~ = n, + t  and T~ = n2+$ obviously yields 
the wrong result, and does indeed lack a justification. The complication arises from 
the fact that U and U are restricted to the positive values, so we do not have two simple 
uncoupled harmonic oscillators for the underlying unperturbed system, but ‘one-sided’ 
oscillators instead. While the algebraic structure of the Hamiltonian is unchanged, its 
analytic structure has changed and we have to specify the boundary conditions at U = 0 
and v = 0. Suppose we formally extend the Hamiltonians (7) and (8) to the negative 
values of U and U. As U and -U in combination with any of U and -U correspond to 
the same point in the true configuration space we must require that the wavefunction 
$(U, v )  is an even function of U, and of U, so that all quadrants in the U, U coordinate 
plane are equivalent. By formally treating the Hamiltonian (7) (with m = 0) as a 
two-dimensional harmonic oscillator we thus select only the even-even parity states, 
whence 

7, = 2n, +; r2 = 2 n 2 + i  (12) 

R12n1, 2n,)= [2n,(2n2+ 1)]1/212n1 - 1,2n,+ 1) 

R+12nl, 2n2) = [(2n,+ 1)2n~1’ /~12n,  + 1, 2n2- 1). 

and 

(13) 

However, by doing the quantisation correctly we have now got the incorrect result for 
the ground state, as can easily be seen from (7). The reason is the non-commutation 
of classical canonical transformations and assignment of differential operators. As a 
consequence our case m = 0 actually corresponds to m = f, but this defect can be 
accounted for by the additive semiclassical correction terms equal to f in equation 
(12), so that we have finally 

71 = 2nl+ 1 72=2n2+1 n,, n , = 0 , 1 , 2 , . .  . . (14) 

Equations (13) and (14) constitute our quantisation scheme. 
Strictly speaking, we must first quantise X and then solve for E, but within the 

semiclassical approximation these operations may be interchanged, We find the power 
expansion (up to the quartic terms) 

A 

In order to quantise (15) we insert A, B, and C from (9a)-(9c) 

By N we have denoted the main quantum number, i.e. 

N =  A =  nl+ n2+ 1 (17) 

so that the lowest term in (16) gives the unperturbed Coulomb spectrum. We can split 
the operator (16) as follows: 

E = -( 1/2N2)  + 8, (18) 
where kD commutes with the Kepler Hamiltonian, i.e. it leaves N manifolds invariant. 
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Therefore, to obtain the spectrum E one has to diagonalise (18) within the N-manifold 
subspace. Writing explicitly 

ED = hy2N2(37172 R’+ -&y4N6[ ~ 1 ~ 2 ( 6 5 ~ :  + 9371 7 2  + 657;) 

+ (k’+ i+’)(337:  -4oT,T2 + 337:) - 3( i4 + i+4)] 

det((n, n 2 l E D  In nS) - E d  n l n 2 n ;  n i )  = 0 

(19) 

we have to solve 

(20) 

for each N-manifold subspace such that n, + n,+ 1 = n{ + n;+ 1 = N. This is straightfor- 
ward. Let us consider some examples. 

= 1 and E D  is diagonal, i.e. from 
(16) follows 

4 

( a )  The ground state N = 1. Obviously T ,  = 

y 4 + . .  . . Eoo=--+-y2-- 1 3 223 
2 16 3072 

( b )  The first excited state N = 2. We have only two states )0,2) and 12,O). The 
matrix elements are given by 

(2, ol%DlO, 2)=(0,  21%D12,0)=9y2/4 
(2,O(ED(2,0) = ( 0 , 2 ( E D ( o ,  2) = 6 1/2  7 2 /2 

so that from (20) and ( 1 8 )  we have for the diamagnetic shifts of the 2sO and 2pO states 

9 6’” 

1 9 6”* 
8 (4 2 ) y2’ 

--- 

The results are expected to be quite good for higher levels. It has been shown for 
some examples that the Birkhoff-Gustavson normal form can yield results very close 
to the quantum perturbation theory (Robnik 1984) and has the advantage that one has 
to deal only with finite matrices. 

We turn now to the discussion of the results and note the following observation. 
If In,, n2) is a state in the N-dim subspace of constant main qua?tum number N = n, + 
n2+  1,then the structure of the diamagnetic Zeeman operator ED given in ( 1 )  implies 
that E D ( n l ,  n2! is again in the same N manifold. Thus N manifolds are invariant 
subspaces of Eo, which means complete absence of inter-N mixing. Our approximate 
quantisation therefore predicts that levels differing in N may cross. 

The reason for this lies in the fact alone that the Kepler problem (1) can be mapped 
onto the harmonic oscillator by the regularisation procedure (1)-(5), and the perturba- 
tion of the former can be replaced by the purturbation of the latter. The existence of 
such a mapping simply is a consequence of the property that all Kepler orbits are 
closed (periodic), which is related to the existence of additional integrals of motion 
(Runge-Lenz vector). This is the key to the O(4) symmetry of the Kepler problem. 
So we again reach the conclusion pointed out first by Solovev (1982) and Herrick 
(1982) that O(4) symmetry of the Kepler problem is fundamental to the symmetry of 
the quadratic Zeeman interaction in the weak field limit. (For alternate treatments see 
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Clark and Taylor (1980, 1982) and Richards (1983).) New in our results is that this 
carries over to higher fields, and that the absence of il.+Pr-N mixing is predictedformally 
to all orders in the field. This is in excellent agreemen. with the numerical calculations 
of Zimmerman et a1 (1980, 1982). 

How can we then account for the exponentially small separations of order exp( - N) 
at the avoided crossings that are observed empirically (see Delande and Gay 1981, 
Zimmerman et a1 1980)? Notice the stress on the word formally: the classical perturba- 
tion expansion U la Birkhoff-Gustavson given in equation (8) is a formal expansion. 
It will never converge. Similarly, the quantum perturbation theory (in the orthodox 
formulation) most probably diverges. 

It is reasonable to expect that the exact non-perturbative treatment would explain 
the exponentially small splittings but only below some threshold corresponding to the 
classical critical energy for the onset of chaos, beyond which the approximate symmetry 
is invariably lost. An intuitive and qualitative explanation has been suggested (cf 
Solovev 1982, Robnik 1982): within the semiclassical approximation the wavefunctions 
are localised in non-overlapping regions prescribed by the classical invariant tori-as 
long as they exist. The small splitting of levels would correspond to the small overlap 
of exponentially decaying tails of the wavefunctions obtained if the corrections to the 
semiclassical approximation are taken into account. 

Apart from the fine structure splittings at avoided crossings, the few lowest terms 
of the (quantised) Birkhoff-Gustavson normal form (8) are a good approximation as 
long as the ratio r between two successive non-vanishing terms is small enough. We 
estimate this from (8) and (9), or from (16), to be of the order 

r =  Y ~ T ~ / ( - ~ E ) ~ =  N6y2. 

If r << 1, then the approximation is fairly good because the inter- N mixing is extremely 
weak. However, if r = 1 (or equivalently yN3 = BN3/ Bo = l ) ,  then the approximation 
fails, and the series starts to diverge at the very beginning. As has been pointed out 
(Robnik 1982), the criterion yN3 = 1 is equivalent to the classical stochasticity criterion 
(for N >> 1) .  Thus, the inter-N mixing regime becomes fully developed just above the 
critical energy, .Ecrit = -(2Nf,,)-' = -0.5 y213, beyond which the classical invariant tori 
are all destroyed. The caustics, and with them the localisation of wavefunctions, 
disappear. This is the basis of the prediction that the law of exponentially small splittings 
must break down near yN3 = 1 and beyond this threshold. Hence, for N 5 N,,, 2 y- * I3  
the inter-N mixing is strongt, resulting in the usual avoided crossings and thereby 
building up the quasi-Landau regime eventually. Similar conclusions can be drawn 
from a recent group theoretical treatment by Delande and Gay (1984). The power 
series for the levels as a function of the field that they obtain is not known to converge, 
and it is most likely only an asymptotic series. It certainly does not describe the 
exponentially small splittings (exp( - N ) )  at avoided crossings, consistent with its 
asymptotic nature. The coefficients in the power series are the same as those obtained 
from the quantum perturbation theory, and therefore more accurate than the semi- 
classical results of our present work. 

Finally we should mention that we have done the calculations for the full four- 
dimensional KS transformation ( m  arbitrary) and confirmed that the quality of the 
approximation is not improved. For example, for the ground state we found E = 
- f+5y2/16+.  , . . 

t At the laboratory field strength, e.g. B = 4.7 x IO4 G ( y = 2 x lo-'), one has NCri, = 37. 
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